

Thermal Matter

Thermal Expansion

Linear Expansion

$$\alpha = \frac{\Delta l}{l \Delta T}$$

α = coefficient of linear expansion
 Δl = change in length
 ΔT = rise in temp

Areal Expansion

$$\beta = \frac{\Delta A}{A \Delta T}$$

β = coefficient of areal expansion
 ΔA = change in length

Volume Expansion

$$\gamma = \frac{\Delta V}{V \Delta T}$$

γ = coefficient of volume expansion
 ΔV = change in volume

Relation between α , β and γ

$$\alpha = \frac{\beta}{2} = \frac{\gamma}{3}$$

Measurement of Temperature

$$\frac{C}{100} = \frac{F - 32}{180} = \frac{K - 273}{80}$$

Construction of Thermometer

If length of mercury column at 0° and 100° are l_0 and l_{100} respectively and at t° the length of mercury is l_t .

$$\frac{l_t - l_0}{t} = \frac{l_{100} - l_0}{100}$$

Resistance Thermometer

If R_0 , R_{100} and R_t are the resistances of a platinum wire at temperature 0°C , 100°C and unknown temperature ($t^\circ\text{C}$)

$$\frac{R_t - R_0}{t} = \frac{l_{100} - l_0}{100}$$

Specific Heat Capacity (S)
Heat capacity per gram of substance

$Q = m S \Delta T$
 m = mass of substance
 Q = Heat Required
 ΔT = Change in temperature

Specific Heat capacity of water = 4.184 J/g or 1 cal/g

Molar Specific Heat Capacity

$$c = \frac{\Delta Q}{\mu \Delta T}$$

μ = No. of moles of substance

Latent Heat

m = mass of substance
 L = Latent Heat of Substance
 Q = Heat required

$$Q = m L$$

Principle of Calorimetry

When a hot body is mixed with cold body, then heat lost by hot body is equal to the heat gained by cold body.

$$T_{mix} = \frac{m_1 c_1 T_1 + m_2 c_2 T_2}{m_1 c_1 + m_2 c_2}$$

Transmission of Heat

Thermal Conductivity

K = coefficient of thermal conductivity

A = area of cross-section

l = length of rod

t = time

$\Delta \theta$ = temperature difference between the end of the rod

$$Q = \frac{KA\Delta\theta t}{l}$$

Thermal Resistance

$$R = \frac{l}{KA}$$

Newton's Law of Cooling

The rate of loss of liquid is directly proportional to the difference in Temp. of the liquid and its surroundings.

$$-\frac{dT}{dt} \propto (T - T_0)$$

Radiations

$$\lambda_m T = \text{constant (b)}$$

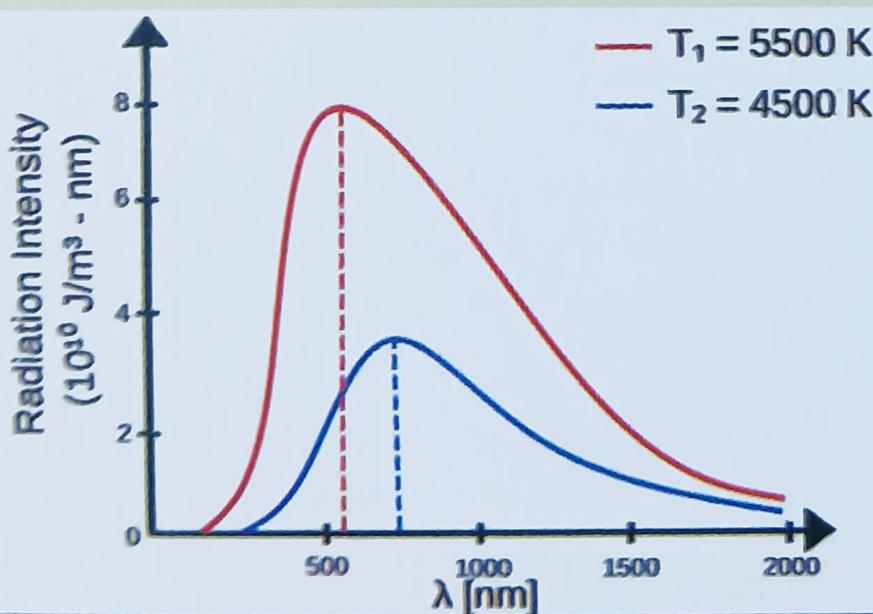
Wein's Displacement Law

Wavelength corresponding to maximum emission decreases with increasing temperature

λ_m = wavelength corresponding to which max energy is radiated

T = Absolute temperature

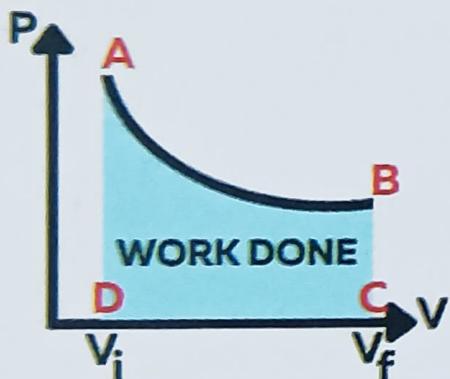
b = Wein's constant
 $= 2.898 \times 10^{-3}$ mK


Stefan's Law

$$\sigma = \text{Stefan's constant} \\ = 5.735 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

$$E \propto T^4 \\ E = \sigma T^4$$

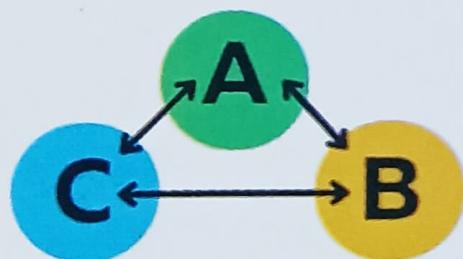
Energy radiated by whole body in t time


$$E = \sigma A t T^4$$

29

Thermodynamics

Work done by a thermodynamic system


$$W = p \times \Delta V$$

Work done in process A-B

$$W = \int_{V_i}^{V_f} p \Delta V = \text{Area } ABCDA$$

Zeroth Law of Thermodynamics

According to this law, two systems in thermal equilibrium with a third system separately, are also in thermal equilibrium with each other.

First Law of Thermodynamics

Heat given to a thermodynamic system (ΔQ) is partially utilised in doing work (ΔW) against the surrounding and the remaining part increases the internal energy (ΔU) of the system.

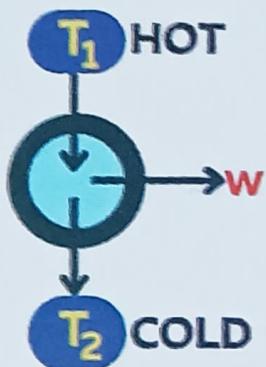
$$Q = \Delta U + \Delta W$$

Second Law of Thermodynamics

It is impossible to transfer heat from a lower temperature body to a higher temperature body without use of an external agency.

30

Entropy (Randomness)


$$dS = \frac{dQ_{rev}}{T}$$

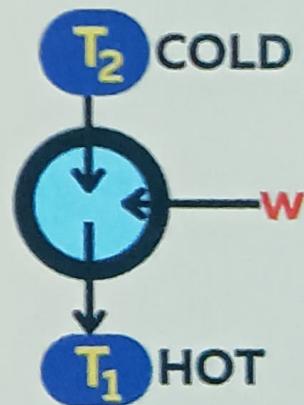
Entropy

At Constant Temp and Pressure
or During a Phase Change
 L = Latent heat

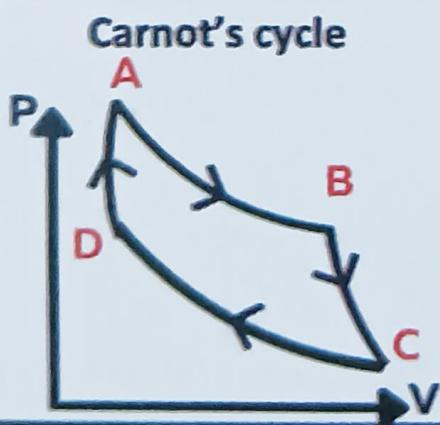
$$dS = \frac{dQ_p}{T} = \frac{dH}{T} = \frac{mL}{T}$$

Heat engine

Thermal efficiency of a heat engine is given by


$$\eta = \frac{\text{Work done}}{\text{Total amount of heat absorbed}}$$

$$\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$$


Refrigerator

$$\beta = \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2}$$

$$\beta = \frac{1 - \eta}{\eta}$$

Carnot's cycle

$$\frac{Q_2}{Q_1} = \frac{T_2}{T_1}$$

Efficiency,
 $\eta = 1 - \frac{T_2}{T_1}$

Expansions

AB : Isothermal

BC : Adiabatic

Compressions

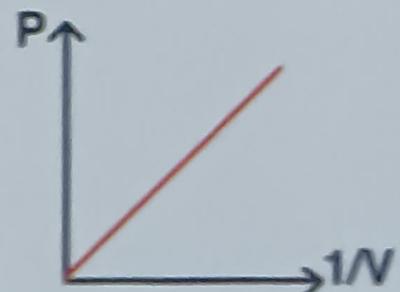
CD : Isothermal

DA : Adiabatic

31

NEET 2023 PYQ'S (Chapter 9-11)

- The amount of energy required to form a soap bubble of radius 2 cm from a soap solution is nearly: 3.01×10^{-4} J
- The venturi-meter works on : **Bernoulli's Principle**
- Let a wire be suspended from the ceiling (rigid support) and stretched by a weight W attached at its free end. The longitudinal stress at any point of cross-sectional area A of the wire is : W/A
- A Carnot engine has an efficiency of 50% when its source is at a temperature 327°C . The temp. of the sink is 27°C

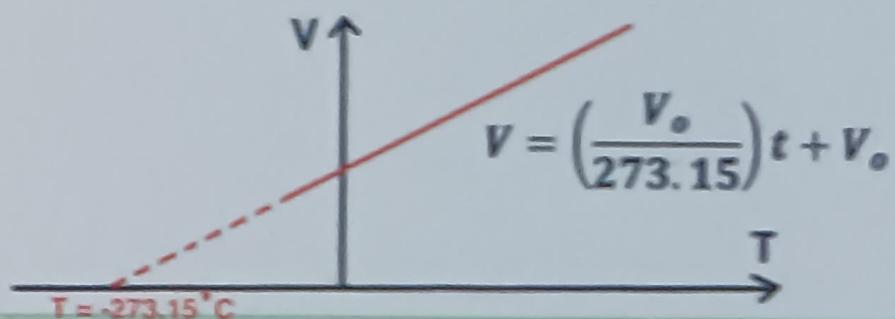

Gaseous State

Boyle's law

$$P \propto \frac{1}{V}$$

$$P_1 V_1 = P_2 V_2$$

Graphs

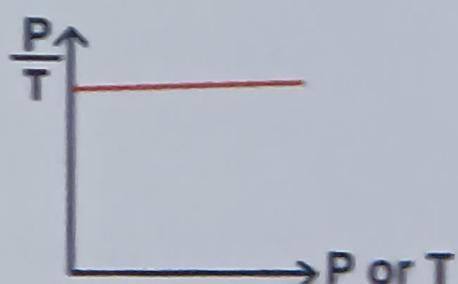
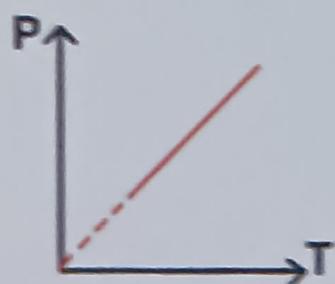


Charles law

$$V \propto T$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Graphs

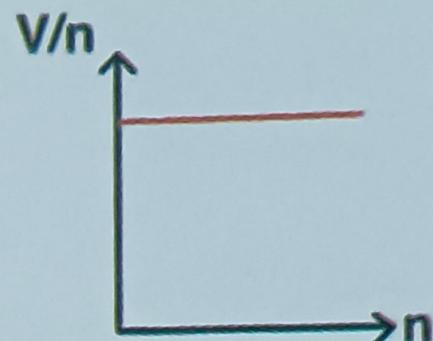
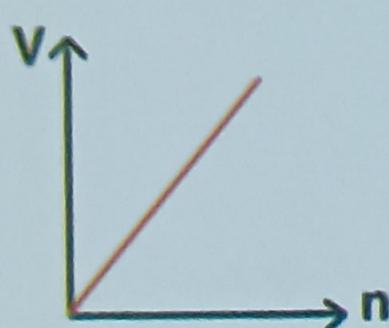



Gay Lussac's Law

$$P \propto T$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Graphs

Avogadro's Law

$$V \propto n$$

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

Graphs

Ideal Gas Equation

Ideal Gas equation

$$PV = nRT$$

Combined Gas Law

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Density relation

$$\rho M = dRT$$

Dalton's Law of Partial pressure

For a mixture of a gases

$$P_{Total} = p_1 + p_2 + p_3 + \dots$$

p = partial pressures

Relation between p & Mole Fraction

$$p = x \times P_{Total}$$

Graham's Law of Diffusion

At Constant T & P

if, r = Rate of Diffusion of a gas

d = Density of gas

M = Molecular Mass

$$\frac{r_1}{r_2} = \sqrt{\frac{d_2}{d_1}} = \sqrt{\frac{M_2}{M_1}}$$

34